Search results for "Laplacian operator"
showing 10 items of 10 documents
PDE triangular Bézier surfaces: Harmonic, biharmonic and isotropic surfaces
2011
We approach surface design by solving second-order and fourth-order Partial Differential Equations (PDEs). We present many methods for designing triangular Bézier PDE surfaces given different sets of prescribed control points and including the special cases of harmonic and biharmonic surfaces. Moreover, we introduce and study a second-order and a fourth-order symmetric operator to overcome the anisotropy drawback of the harmonic and biharmonic operators over triangular Bézier surfaces. © 2010 Elsevier B.V. All rights reserved.
Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem
2020
We establish the existence of a nontrivial and nonnegative solution for a double phase Dirichlet problem driven by a (p(z); q(z))-Laplacian operator plus a potential term. Our approach is variational, but the reaction term f need not satisfy the usual in such cases Ambrosetti-Rabinowitz condition.
The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems
2022
In this paper, we consider local Dirichlet problems driven by the (r(u),s(u))-Laplacian operator in the principal part. We prove the existence of nontrivial weak solutions in the case where the variable exponents r,s are real continuous functions and we have dependence on the solution u. The main contributions of this article are obtained in respect of: (i) Carathéodory nonlinearity satisfying standard regularity and polynomial growth assumptions, where in this case, we use geometrical and compactness conditions to establish the existence of the solution to a regularized problem via variational methods and the critical point theory; and (ii) Sobolev nonlinearity, somehow related to the spac…
Harnack estimates for degenerate parabolic equations modeled on the subelliptic $p-$Laplacian
2014
Abstract We establish a Harnack inequality for a class of quasi-linear PDE modeled on the prototype ∂ t u = − ∑ i = 1 m X i ⁎ ( | X u | p − 2 X i u ) where p ⩾ 2 , X = ( X 1 , … , X m ) is a system of Lipschitz vector fields defined on a smooth manifold M endowed with a Borel measure μ, and X i ⁎ denotes the adjoint of X i with respect to μ. Our estimates are derived assuming that (i) the control distance d generated by X induces the same topology on M ; (ii) a doubling condition for the μ-measure of d-metric balls; and (iii) the validity of a Poincare inequality involving X and μ. Our results extend the recent work in [16] , [36] , to a more general setting including the model cases of (1)…
Superlinear (p(z), q(z))-equations
2017
AbstractWe consider Dirichlet boundary value problems for equations involving the (p(z), q(z))-Laplacian operator in the principal part and prove the existence of one and three nontrivial weak solutions, respectively. Here, the nonlinearity in the reaction term is allowed to depend on the solution, but does not satisfy the Ambrosetti–Rabinowitz condition. The hypotheses on the reaction term ensure that the Euler–Lagrange functional, associated to the problem, satisfies both the -condition and a mountain pass geometry.
Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
2021
The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.
Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator
2017
We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.
Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold
2019
We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.
Neumann p-Laplacian problems with a reaction term on metric spaces
2020
We use a variational approach to study existence and regularity of solutions for a Neumann p-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.
On elliptic equations involving the 1-Laplacian operator
2018
El objetivo de esta tesis doctoral es dar a conocer los resultados obtenidos sobre existencia, unicidad y regularidad de las soluciones de diferentes ecuaciones elípticas regidas por el operador 1-laplaciano. El primer capítulo está dedicado al estudio de la ecuación - div (Du/|Du|) + g(u) |Du| = f(x) en un subconjunto abierto y acotado U de R^N con frontera Lipschitz, con la condición de Dirichlet u=0 en la frontera, tomando una función f positiva y siendo g una función real, continua y positiva. Por un lado, obtenemos soluciones no acotadas cuando el dato f pertenece al espacio de Marcinkiewicz L^{N,\infty}(U), por lo que debemos introducir la definición apropiada para este tipo de soluci…